Then, we’ll show them out on Smith Chart and learn how to easily use this great chart to help you resolve those difficult RF impedance matching issues.
We’ll briefly mention those basic equations that construct the Smith chart. You’ll not learn the mysteries of the Smith Chart, or those sophisticated formula and special usages of this great chart here.įirstly, you’ll learn these basic parameters such as \(Z\) (impedance), \(z\) (normalized impedance), \(Y\) (admittance), \(y\) (normalized admittance), \(R\) (real part of impedance), \(X\) (imaginary part of impedance), \(r\) (real part of normalized impedance), \(x\) (imaginary part of normalized impedance), \(G\) (real part of admittance), \(B\) (imaginary part of admittance), \(g\) (real part of normalized admittance), \(b\) (imaginary part of normalized admittance), \(Γ\) (reflection coefficient), \(VSWR\) (voltage standing wave reflection), etc. We’ll discuss the Smith Chart in this sequence and start with the very basic knowledge of this important tool that all RF people should learn and use. Impedance Matching and the Smith Chart: The Fundamentals